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Abstract

Accurate estimation of value-at-risk (VaR) and assessment of associated uncer-
tainty is crucial for both insurers and regulators, particularly in Europe. Existing
approaches link data and VaR indirectly by first linking data to the parameter of a
probability model, and then expressing VaR as a function of that parameter. This
indirect approach exposes the insurer to model misspecification bias or estimation
inefficiency, depending on whether the parameter is finite- or infinite-dimensional.
In this paper, we link data and VaR directly via what we call a discrepancy function,
and this leads naturally to a Gibbs posterior distribution for VaR that does not suf-
fer from the aforementioned biases and inefficiencies. Asymptotic consistency and
root-n concentration rate of the Gibbs posterior are established, and simulations
highlight its superior finite-sample performance compared to other approaches.

Keywords and phrases: Direct posterior; discrepancy function; M -estimation;
model misspecification; risk capital; robust estimation.

1 Introduction

European insurance regulation Solvency II (2009, e.g., Article 101) stipulates that insurers
set their risk capital to the 99.5% Value-at-Risk (VaR) of the potential loss, so inference
on VaR has become an important problem for both researchers and practitioners in the
field of insurance. Technically, VaR is a quantile of the loss distribution (Artzner et
al. 1999) and, therefore, risk capital calculation is estimation of an extreme quantile of
the loss distribution. To this end, many classical methods are available (e.g., Embrechts
et al. 1999, Dowd 2001 and Gourieroux et al. 2000). Since the accurate estimation
of risk capital is directly tied to the insurer’s solvency, the assessment of associated
uncertainty is a key concern for both insurers and regulators. Gerrard and Tsanakas
(2012), Fröhlich and Weng (2015) and Bignozzi and Tsanakas (2016) suggest several
different approaches to accounting for estimation uncertainty. The downside is that these
approaches require the insurer to pin down a parametric model for the future loss, which
subjects the insurer to potential model misspecification bias (e.g., Hong and Martin 2018).
To avoid potential model misspecification, an attractive alternative is a nonparametric
approach, where the (infinite-dimensional) parameter is the loss distribution itself. For
example, Hong and Martin (2017) suggest a mixture of log-normal distributions and
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take a Bayesian approach with an appropriate Dirichlet process prior (e.g., Ferguson
1973; Müller and Quintana 2004; Ghoshal 2010) on the mixing distribution. This yields
a posterior for the loss distribution, from which the corresponding posterior for VaR
can be obtained in a conceptually straightforward way. However, data are only weakly
informative about extreme quantiles, and it is not clear how a nonparametric prior for the
full loss distribution would affect the corresponding posterior for VaR. Therefore, based
on the currently available tools, we face the following dilemma: either use a parametric
model and risk misspecification bias, or use a more flexible nonparametric model and risk
inefficiency and/or unexpected bias coming from the prior.

Towards a new approach, first note that the classical Bayesian approach links the
data and model parameters through a likelihood function. But a likelihood function
requires the insurer to give a complete specification of a statistical model, whether it be
parametric or nonparametric, finite- or infinite-dimensional. So the only way to avoid
the aforementioned two extremes is to link data and parameters in a different way, not
via a likelihood. In this paper we propose to link data and parameters via a discrepancy
function, of which the log-likelihood is a special case. Specifically, we will introduce a
suitable discrepancy function for VaR, and then combine an empirical version of this
discrepancy with an informative prior distribution for VaR to obtain what is often called
a Gibbs posterior (Zhang 2006ab and Bissiri et al. 2016). Roughly, the advantages
of this approach are two-fold: first, by working with discrepancy instead of likelihood,
we avoid specification of a statistical model, which reduces our susceptibility to model
misspecification biases; second, we can express the connection between data and VaR
directly, rather than indirectly as a function of other model parameters or as a functional
of the loss distribution, which allows us to directly incorporate available prior information
about VaR into our Gibbs posterior, improving efficiency.

The remainder of the paper is organized as follows. In Section 2, we introduce the
Gibbs posterior. Then, in Section 3, we derive the Gibbs posterior for VaR, establish
its asymptotic consistency, and discuss scaling of the Gibbs posterior for the purpose
of uncertainty quantification. Section 4 gives two numerical examples to illustrate the
accuracy of the Gibbs posterior in estimating VaR. Finally, we give a few concluding
remarks in Section 5.

2 Review of Gibbs posteriors

The Gibbs posterior is well-developed in statistics literature. There are at least two
derivations of the Gibbs posterior, from the points of view of coherence in inference (Bissiri
et al., 2016) and efficiency in prediction (Zhang, 2006b). There are also many applications
of Gibbs posteriors in several fields: econometric models in Chernozhukov and Hong
(2003), variable selection in Jiang and Tanner (2008), clinical trials in Syring and Martin
(2017a), and image analysis in Syring and Martin (2017c). For the specific problem of
estimating VaR, we argue the merits of the Gibbs posterior approach by establishing its
good asymptotic properties in Section 3.2 and Appendix A, and by demonstrating its
accuracy in inference in numerical examples in Section 4. Here we introduce necessary
notations, define the Gibbs posterior, and discuss its unique scale parameter.

To describe the Gibbs posterior, we let X be a random variable with distribution
function P . A data scientist observes a random sample Xn = (X1, . . . , Xn) generated
from P , and is interested in a feature/parameter θ = θ(P ) of P , where θ takes value in a
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parameter set Θ. Suppose there is a linking function `θ(x) that links data to the parameter
such that the true parameter θ? satisfies θ? = arg minθ∈Θ EP{`θ(X)}. Regarded as a
function of θ, EP{`θ(X)} is called the discrepancy function and denoted as D(θ). Its
empirical version n−1

∑n
i=1 `θ(Xi) is denoted by Dn(θ). For a chosen prior distribution Π

for θ, the Gibbs posterior Πn for a Π-measurable set B is calculated as

Πn(B) =

∫
B
e−ωnDn(θ) Π(dθ)∫

Θ
e−ωnDn(θ) Π(dθ)

, (1)

where ω is a scale parameter to be determined; see Section 3.3. The Gibbs posterior
combines the strengths from both M -estimation (e.g., van der Vaart 1998, Chapter 5) and
Bayesian analysis. As in M -estimation, here data and the parameter are linked together
via the discrepancy function instead of a likelihood function, thus model misspecification
risk is completely avoided. On the other hand, the Gibbs posterior gives a distribution
estimator rather than a point estimator so that uncertainty quantification, in the form
of credible intervals, say, can be readily obtained. In contrast to the Bayesian approach
in which nuisance parameters are often introduced through the likelihood, we target the
parameter of interest directly, so no marginalization steps are needed to obtain inference
on the interest parameter. Moreover, since the only parameter appearing in the Gibbs
posterior is the interest parameter, informative prior specification is straightforward.

The scale parameter ω in (1), also called the learning rate, essentially controls the
spread of the Gibbs posterior distribution. It is chosen at the discretion of the data
scientist. Regarding the choice of ω, several different proposals have been made by var-
ious authors, such as the SafeBayes method in Grünwald and van Ommen (2014), the
coherence method in Bissiri et al (2016), and the unit information method in Holmes
and Walker (2017), among others. Our approach to setting the value of the scale pa-
rameter is to ensure that the posterior credible intervals are calibrated in the sense that
their frequentist coverage probability is approximately equal to the nominal credibility
level. More detailed discussion of our implementation of this choice of ω will be given in
Section 3.3.

3 Gibbs posterior for VaR

3.1 Construction

To set the stage, let X1, . . . , Xn be independent and identically distributed (iid) insurance
claims generated from an unknown loss distribution P . For a given q ∈ (0, 1), let θ? =
θ?q(P ) denote the corresponding VaR, the 100qth quantile of P :

θ? = inf{θ : P ((−∞, θ]) ≥ q}.

Throughout, we assume X1 is integrable and that the VaR θ? is identifiable in the sense
that, if F is the distribution function of P , then F (θ) > F (θ?) for all θ > θ?. We are
particularly interested in the case q = 0.995. Since losses are nonnegative, here Θ is taken
to be R+ = [0,∞). Next, define the discrepancy function

D(θ) =
1

2

∫
R+

(
|θ − x| − x

)
P (dx) +

(1− 2q)θ

2
,
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the expectation of the linking function `θ(x) = 1
2
(|θ − x| − x) + (1

2
− q)θ. Koltchinskii

(1997) shows that θ? is the minimizer of this discrepancy function; if F is smooth in a
neighborhood of θ? this can be verified by setting the derivative of D equal to zero and
solving for θ. The point is that expressing VaR as the minimizer of a discrepancy function
creates an opportunity to construct a Gibbs posterior as described in Section 2. Given
an iid sample X1, . . . , Xn from P , define the empirical discrepancy function

Dn(θ) =
1

2n

n∑
i=1

(
|θ −Xi| −Xi

)
+

(1− 2q)θ

2
.

Combining the empirical discrepancy function Dn(θ) with a prior distribution Π on Θ,
we can then construct a Gibbs posterior for VaR according to (1). Note that, for the
kinds of applications we have in mind, where q � 0.5, the discrepancy function Dn(θ)
increases linearly for large θ. Then, the negative sign in the exponent implies that the
integrand in (1) is indeed integrable for any reasonable (possibly improper) prior Π.
Therefore, the Gibbs posterior Πn is a well-defined distribution on R+. And since it
is only one-dimensional, computation of any relevant feature of the Gibbs posterior is
straightforward; see Section 4. For example, if Π has a density π(θ), the Gibbs posterior
has density

πn(θ) ∝ exp{−nωDn(θ)} π(θ). (2)

For our theoretical investigations in Section 3.2 below, we take ω to be a fixed constant;
but some care is needed in setting its value, and we discuss this in Section 3.3. As for
the prior distribution, since VaR is a practically meaningful quantity, the user may very
well have genuine prior information available (e.g., based on historical data) from which
an informative prior distribution can be constructed. As a general recommendation,
we suggest a gamma prior distribution with shape and scale parameters chosen so that
the mean reflects some genuine prior information and the standard deviation is some
(potentially large) fraction of that mean; see Section 4 for more details on this prior
specification.

3.2 Properties

A desirable property of any statistical procedure is consistency, i.e., when the sample size
is large, the estimator, etc., is close to the true value with high probability. Consistency
results such as these are standard for the classical VaR estimators based on quantiles of
the empirical distribution (e.g. van der Vaart 1998, Chapter 21). In the present context,
we say that our Gibbs posterior Πn for θ? = θ?q(P ), with q ∈ (0, 1) fixed, is consistent if

Πn({θ : |θ − θ?(P )| > ε})→ 0 in P -probability, for all ε > 0, as n→∞.

The next theorem shows that, under mild conditions on the prior, the Gibbs posterior in
(2) is consistent over a wide range of distributions P .

Theorem 3.1. Let P be the true loss distribution and θ? = θ?q(P ) denote the true VaR,
with q ∈ (0, 1) fixed. If the prior, Π, is continuous and bounded away from zero on any
neighborhood of θ?, then the Gibbs posterior (2) is consistent.

Proof. Take any ε > 0 and define an ε neighborhood around θ?, that is, Aε = {θ :
|θ − θ?| ≤ ε}. Set δ = ε/2 and split the sample space into the two disjoint regions:

Xn = {(x1, . . . , xn) : |θ̂n − θ?| ≤ δ} and Xc
n = {(x1, . . . , xn) : |θ̂n − θ?| > δ},
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where θ̂n denotes a minimizer of Dn(θ), which is known to be a consistent estimator for
θ?; see Koltchinskii (1997). Next, write the Gibbs posterior probability of Acε as

Πn(Acε) = Πn(Acε) 1Xn(Xn) + Πn(Acε) 1Xcn(Xn),

where 1B(x) takes value 1 if x ∈ B and 0 otherwise. Consistency of θ̂n implies the
second term vanishes in P -probability as n → ∞. Therefore, we only need to analyze
the Gibbs posterior probability for “nice” data sets Xn that reside in Xn. Rewrite this
Gibbs posterior probability as a ratio Πn(Acε) = Nn/In, where

Nn =

∫
Acε

e−ωn{Dn(θ)−Dn(θ?)}Π(dθ) and In =

∫
R+

e−ωn{Dn(θ)−Dn(θ?)}Π(dθ).

Our strategy is to bound the numerator from above and the denominator from below in
such a way that the posterior probability vanishes in the limit as n→∞ in P -probability.

The denominator, In, can be bounded by e−ωna for any a > 0 in a manner such as that
in Lemma 4.4.1 of Ghosh and Ramamoorthi (2003); the crux of their argument, phrased
in our context, is that Dn(θ)→ D(θ) in P -probability for all fixed θ, which follows from
the law of large numbers. The only condition needed to prove this lower bound is that
the prior assign positive mass to all “discrepancy neighborhoods” of θ?, i.e., to sets of the
form

{θ : D(θ)−D(θ?) ≤ r}, for all r > 0.

But the discrepancy function difference may be written as

D(θ)−D(θ?) = θ{F (θ)− q} − θ?{F (θ?)− q} −
∫ θ

θ?
xP (dx),

when θ > θ?, where F is the distribution function corresponding to P . Then, bounding
the last term by

∫ θ
θ?
xP (dx) ≥ θ?{F (θ)− F (θ?)}, we have

D(θ)−D(θ?) ≤ (θ − θ?){F (θ)− q}.

For θ? > θ, the bounding is similar: D(θ)−D(θ?) ≤ (θ? − θ){q − F (θ)}. Hence we have

{θ : D(θ)−D(θ?) ≤ r} ⊃ {θ : |θ − θ?| < r},

and our assumption on Π implies that the discrepancy neighborhood has positive prior
probability. This verifies the only requirement of the denominator bound given by Lemma
4.4.1 of Ghosh and Ramamoorthi (2003).

Now consider the numerator, Nn. In the integrand, add and subtract Dn(θ? ± ε) in
the exponent, where “±” denotes whichever of θ? + ε or θ?− ε has smaller value at Dn(·).
Then, by convexity, and the fact that θ̂n /∈ Acε,

Dn(θ)−Dn(θ?) = Dn(θ)−Dn(θ? ± ε) +Dn(θ? ± ε)−Dn(θ?)

≥ Dn(θ? ± ε)−Dn(θ?).

Therefore, on Xn,

Nn =

∫
Acε

e−ωn{Dn(θ)−Dn(θ?)}Π(dθ) ≤ e−ωn{Dn(θ?±ε)−Dn(θ?)}.
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By the law of large numbers, Dn(θ? ± ε)−Dn(θ?)→ D(θ? ± ε)−D(θ?) in P -probability
which, by the uniqueness of θ?, is some positive value, say, t > 0. Therefore, the upper
bound above will be less than e−ωnt/2 with P -probability converging to 1.

Putting together the bounds on the numerator and denominator, we have that, with
P -probability converging to 1,

Πn(Acε) ≤
Nn

In
≤ e−ωn(t/2−a).

But this holds for any a > 0, so taking a < t/2 shows that the left-hand side above must
converge in P -probability to 0 as n→∞, which proves the consistency claim.

We can also identify the minimal size of the neighborhoods needed such that the
Gibbs posterior remains consistent. The size of the neighborhoods is then referred to as
the “concentration rate” of the Gibbs posterior. Specifically, we have that

Πn({θ : |θ − θ?| > Mnn
−1/2})→ 0 in P -probability (3)

for any Mn → ∞. Therefore, the Gibbs posterior has the same root-n rate as the
M-estimator of the quantile (Koltchinskii 1997). For details, see Theorem A.1 in the
appendix.

3.3 Tuning the scale

In Section 3.1, we showed the Gibbs posterior for the VaR is formulated using a dis-
crepancy function exactly equal to the loss minimized in M -estimation. However, unlike
M -estimation, the Gibbs posterior includes the additional scale parameter ω. Multiplying
the discrepancy function by a positive constant has no effect on M -estimation because
it does not change the location of its minimizer, but it does affect the Gibbs posterior.
In particular, the scale parameter tends to tighten/flatten the Gibbs posterior by placing
more/less weight on the discrepancy function versus the prior probability distribution.
This has the effect of changing the length and the coverage probability of posterior cred-
ible intervals. Hence, by carefully selecting the scale parameter we can ensure posterior
credible intervals for the VaR actually attain their nominal coverage probability. Al-
gorithm 1 provides a brief description of the method used to calibrate Gibbs posterior
credible intervals for VaR by selecting an appropriate value of the scale parameter ω.
The basic idea is to get a bootstrap-based approximation of the coverage probability of
the Gibbs posterior credible intervals, and then use stochastic approximation to solve for
the ω value that puts this coverage probability close to the target confidence level. The
algorithm is applied to both real and simulated data in Section 4. A general version of
this algorithm has been implemented successfully for several other Gibbs and Bayesian
posteriors; see Syring and Martin (2017b). Additionally, R codes for calibrating the
Gibbs posterior for the VaR, including a fast implementation using C++, are available
at https://github.com/nasyring/GPC.

4 Examples

4.1 1990 Norwegian fire claims data

Our goal here is to produce a Gibbs posterior distribution for the VaR, with q = 0.995,
based on the 1990 Norwegian fire claims data which has been analyzed by Brazauska and
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Algorithm 1 — Gibbs Posterior Calibration for VaR.

Fix a nominal confidence level α ∈ (0, 1), a convergence tolerance ε > 0, and an ini-
tial guess ω(0) of the scale parameter. Resample B data sets of size n from Xn with
replacement, denoted X̃n

1 , . . . , X̃
n
B. Set t = 0 and do:

1. For each b = 1, . . . , B, construct the Gibbs posterior based on data X̃n
b and compute

the corresponding 100(1− α)% credible interval C̃b
n,α.

2. Evaluate the empirical coverage probability

ĉα(ω(t) | Pn) = B−1

B∑
i=1

1{C̃b
n,α 3 θ̂n},

the proportion of the B intervals containing the M-estimator of the qth-quantile,
θ̂n.

3. If
∣∣ĉα(ω(t) | Pn)− (1− α)

∣∣ < ε, then stop and return ω(t) as the output; otherwise,

update ω(t) to ω(t+1) according to ω(t+1) = ω(t) + (t+ 1)−3/4{ĉα(ω(t) | Pn)− 1 + α},
set t← t+ 1, and go back to Step 1.

Kleefed (2016) and Mdziniso and Cooray (2018). Here we divide all the claim amounts by
500, so that the range is [1, 290] and [1, 157] for the 1989 and 1990 data sets, respectively.
In this case, the naive VaR estimate based on the (scaled) 1989 data is m = 64.8. Since
it is certainly possible for the 1990 data to differ in significant ways from the 1989 data—
in fact, the naive VaR estimate from the 1990 data is 49.8, not so close to that of the
1989 data—we do not want to commit to this value too much, we only want to use it to
point our Gibbs posterior in generally the right direction. Therefore, we use a relatively
“flat” Gamma(a, b) prior for VaR, one whose mean is the historical estimate m and whose
standard deviation is cm, where c ∈ (0, 1]. This can be achieved by taking the gamma
shape and scale parameters as a = c−2 and b = c2m, respectively. Here we take c = 2−1/2,
so that a = 2 and b = m/2 = 32.4, but an insurer is free to use a different prior if he/she
chooses.

Figure 1 displays Gibbs posteriors with prior distribution as stated above and a non-
parametric Bayesian posterior based on that in Hong and Martin (2017) for the Norwegian
fire claims 1990 data set. Panel (a) shows that the Gibbs posterior is concentrated near
the empirical 99.5% quantile, and that Algorithm 1 decreases the scaling parameter from
the default choice of 0.10, resulting in a wider Gibbs posterior but with otherwise the
same shape. Panel (b) compares the calibrated Gibbs posterior and the nonparametric
Bayesian posterior from Hong and Martin (2017) based on a Dirichlet Process mixture of
log-normals. Both the Gibbs posterior and that based on the nonparametric Bayes model
have roughly the same center, near the empirical quantile, but simulations in Section 4.2
suggest that the nonparametric Bayesian posterior usually has higher spread.

4.2 Simulated data

The following simulation demonstrates the effectiveness of Algorithm 1 in calibrating
Gibbs posterior credible intervals. We simulate n = 500 losses from two distributions:

(a) the Pareto (Type II) distribution with parameters σ = 300 and τ = 2, so that the
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(a) Gibbs with two ω values (b) Comparison of Gibbs with DP mixture

Figure 1: Panel (a): Plots of the Gibbs posterior density (2) for the 1990 Norwegian fire
claims data based on two settings of the scaling parameter ω: dashed curve corresponds to
ω = 0.10 and solid curve corresponds to the calibrated Gibbs posterior with ω ≈ 0.038.
Vertical dotted line represents the empirical estimate of VaR, i.e., the 99.5% sample
quantile. Panel (b): Plots of the calibrated Gibbs posterior and the nonparametric
Bayesian posterior from Hong and Martin (2017).

99.5% quantile is approximately 3, 943;

(b) the Weibull distribution with shape and scale parameter values 1.5 and 3000, re-
spectively, so that the 99.5% quantile is approximately 9, 118.

In order to apply Algorithm 1 we resample the data set with replacement B = 200
times and for each of the B data sets we sample the corresponding Gibbs posterior
M = 5000 times, and compute 95%-credible intervals (α = 0.05). For comparison, we
repeat the simulation using three other approaches, bootstrapping the M -estimate of
the VaR, the nonparametric DP mixture posterior in Hong and Martin (2017), and the
“oracle” Bayesian posterior based on the true (Pareto or Weibull) likelihood. For the
parametric Bayesian posteriors and the Gibbs posterior, a flat prior is used. As discussed
in Section 1, the Gibbs posterior has advantages over both the M -estimator and the non-
parametric Bayesian approach, which suggest it could produce more efficient inferences
about the VaR. Compared to the bootstrap alone, the Gibbs posterior has the advantage
of incorporating prior information, while compared to nonparametric Bayesian models
the Gibbs posterior is simpler, modeling the VaR directly without needing to estimate
the entire loss distribution. For the Gibbs posteriors, the Bayesian oracle posteriors
and the bootstrap we repeated the simulation 5000 times, and used 5000 posterior sam-
ples/bootstrap resamples to compute interval estimates. However, for the nonparametric
Bayesian posteriors we used only 1000 posterior samples and only 1000 repetitions of
the simulation due to the high computational time of that approach. The results of the
simulations are displayed in Table 1. The “oracle” results we include above represent
the best possible inference when the true model is known, but in all realistic problems
the true model is not known. We found that using the wrong model, e.g. Weibull for
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Pareto VaR Weibull VaR

Oracle posterior
coverage 0.96 0.98
length 4.23 1.82

Gibbs posterior
coverage 0.92 0.97
length 5.08 2.82

bootstrapped M-est.
coverage 0.88 0.87
length 6.50 2.46

DP mixture
coverage 0.95 0.90
length 5.85 3.45

Table 1: Empirical coverage probabilities of 95% confidence/credible intervals and average
interval lengths (in thousands) for four methods.

Pareto data and vice versa, could result in enough bias to cause credible intervals to
have negligible coverage probability. While these may not be “good” models, the point
is that it is not clear how to choose a good model, so it is valuable to avoid modeling
altogether. The three robust techniques covered (the Gibbs posterior, the bootstrap, and
the nonparametric Bayesian posterior) all attempt to provide reliable inference without
the need for the user to specify a finite-dimensional parametric model. And, at least in
these two examples, the Gibbs posterior calibrated using Algorithm 1 does the best job.

5 Discussion

Inference on VaR is an important and challenging problem, in part because data are, by
definition, not-so-informative about extreme quantiles, but also because it is not possible
to directly link data to VaR via a probability model. In this paper, we used special
characterization of VaR as the minimizer of a suitable discrepancy function to construct
a direct Gibbs posterior for VaR, one that does not have to first pass through a probability
model, perhaps with nuisance parameters. This allows the insurer to directly incorporate
prior information about VaR, which is likely to be available from historical records, and
also to reduce their risk of model misspecification biases and/or inefficiencies that may
result from adopting robust-yet-complex model formulations.

The Gibbs posterior has a delicate dependence on a scale parameter ω in the sense
that the choice of this parameter can drastically affect the finite-sample performance.
Here we have employed a Gibbs posterior calibration strategy from Syring and Martin
(2017b) that ensures the Gibbs posterior credible intervals achieve the nominal frequentist
coverage probability, thereby leading to valid uncertainty quantification about VaR.

The approach presented in this paper is not specific to VaR. In fact, it is common in
econometric and other insurance-related applications to use methods that rely minimally
on a statistical model, such as estimating equations. These approaches are useful for
producing point estimates, but uncertainty quantification requires asymptotic approxi-
mations, etc. The calibrated Gibbs approach employed here provides a nice Bayesian-
like alternative to these methods, wherein a posterior distribution is constructed without
specifying a statistical model and the readily obtained credible regions attain the nominal
coverage probability via the calibration algorithm. We believe that this Gibbs posterior
approach is interesting and powerful, and we hope to present on other relevant applica-
tions elsewhere.
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A Gibbs posterior concentration rate

Theorem A.1. Let P be the true loss distribution and θ? = θ?q(P ) denote the true VaR,
with q ∈ (0, 1) fixed. If the prior Π for θ has a density function continuous and bounded
away from zero at θ?, then the Gibbs posterior Πn satisfies (3).

Proof. We prove this by verifying the three conditions of Theorem 4.2.1 in Syring (2017).
That is, we will show that there exists constants C1, C2, c > 0 such that for every n and
every sufficiently small δ > 0

sup
|θ−θ?|>δ

{D(θ?)−D(θ)} ≤ −C1δ
2, (4)

E sup
|θ−θ?|<δ

|Gn(`θ − `θ?)| ≤ C2δ, (5)

Π({θ : D(θ)−D(θ?) < n−ε/6}) & e−5cεn/6, (6)

where ε > 0 and Gn =
√
n(Pn − P ) is the empirical process.

By direct calculation, similar to that shown in the proof of Theorem 3.1, Condition (4)
can be verified. Next, we take the constant function δ as an envelop for the class F =
{`θ − `θ? : |θ − θ?| < δ}, where `θ(x) = 1

2
(|θ − x| − x) + (1/2− q)θ. Example 19.7 in van

der Vaart (1998) provides a bound on the bracketing number of the set F from which
follows a bound on the empirical process as in Condition (5); see Corollaries 5.53 and
19.35 in van der Vaart (1998). Finally, Condition (6) follows from the fact that

Π({θ : D(θ)−D(θ?) < n−ε/6}) ≥ Π({θ : |θ − θ?| < n−ε/6})

and, by the stated assumption on the prior, the right-hand side is lower bounded by a
constant times n−ε/6, which is greater than anything exponentially small in n.
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Fröhlich, A. and Weng, A. (2015). Modeling parameter uncertainty for risk capital
calculation. European Actuarial Journal 5, 79–112.

Gerrard, R. and Tsanakas, A. (2011). Failure probability under parameter uncertainty.
Risk Analysis 31, 727–744.

Ghosal, S. (2010). The Dirichlet process, related priors and posterior asymptotics. In
Bayesian Nonparametrics, Cambridge University Press, 35–79.

Ghosh, J. K. and Ramamoorthi, R. V. (2003). Bayesian Nonparametrics, Springer: New
York.

Gourierouxa, C., Laurent, J.P. and Scaillet, O. (2000). Sensitivity analysis of Values at
Risk. Journal of Empirical Finance 7, 225–245.

Grünwald, P. and Van Ommen T. (2014). Inconsistency of Bayesian inference for mis-
specified linear models, and a proposal for repairing it. Bayesian Analysis 12(4),
1069–1103.

Holmes, C. and Walker, S.G. (2017). Assigning a value to a power likelihood in a
Bayesian model. Biometrika 104, 497–503.

Hong, L. and Martin, R. (2017). A flexible Bayesian nonparametric model for predicting
future insurance claims. North American Actuarial Journal 21(2), 228–241.

Hong, L. and Martin, R. (2018). Dirichlet process mixture models for insurance loss
data. Scandinavian Actuarial Journal 6, 545–554.

Jiang, W. and Tanner, M. A. (2008). Gibbs posterior for variable selection in high-
dimensional classification and data mining. Annals of Statistics 36(5), 2207-2231.

Koltchinskii, V.I. (1997). M -estimation, convexity and quantiles. Annals of Statis-
tics 25(2), 435–477.

Mdziniso, N.C. and Cooray, K. (2018). Odd Pareto families of distributions for modeling
loss payment data. Scandinavian Actuarial Journal 1, 42–63.

Müller, P. and Quintana, F. A. (2004). Nonparametric Bayesian data analysis. Statis-
tical Science 19, 95–110.

Solvency II (2009). http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=

OJ:L:2009:335:0001:0155:en:PDF. Accessed on June 26, 2018.

11



www.researchers.one/article/2018-09-11

Syring, N. (2017). Gibbs posterior distributions: new theory and applications (doc-
toral dissertation). University of Illinois at Chicago. Retrieved from http://hdl.

handle.net/10027/22219.

Syring, N. and Martin, R. (2017a). Gibbs posterior inference on the minimum clinically
important difference. Journal of Statistical Planning and Inference 187, 67–77.

Syring, N. and Martin, R. (2017b). Calibrating general posterior credible regions,
Biometrika, to appear. https://arxiv.org/abs/1509.00922.

Syring, N. and Martin, R. (2017c). Robust and rate-optimal Gibbs posterior inference
on the boundary of a noisy image, Annals of Statistics, revision submitted. https:
//arxiv.org/abs/1606.08400.

van der Vaart, A. W. (1998). Asymptotic Statistics, New York: Cambridge University
Press.

Zhang, T. (2006a). From ε-entropy to KL-entropy: analysis of minimum information
complexity density estimation. Annals of Statistics 34, 2180–2210.

Zhang, T. (2006b). Information theoretical upper and lower bounds for statistical esti-
mation. IEEE Transaction on Information Theory 52, 1307–1321.

12


